Downstream-of-Gene Transcript (DoG RNA)芯片

  • 简介
  • 技术优势
  • 数据库
  • 实验流程
  • 结果展示
  • 研究路线
  • 数谱生物独家提供Arraystar Downstream-of-Gene Transcript (DoG RNA) 芯片技术服务,助力分析和研究人类DoG RNA。该芯片包含超过13,000个探针,可以同时检测和定量DoG RNADoG宿主基因的pre-mRNA 以及作为其潜在调控靶点的下游重叠转录本,具有高度的准确性和特异性。

     

    为什么要研究DoG?>>

    DoG RNA是一类由于转录未能正常终止、发生转录通读(transcription read-through)时,在蛋白编码基因转录终止位点之后继续转录的RNA。>>

     

    DoG RNA在疾病中对基因转录的调节 >>

    DoG RNA在细胞衰老中介导转录干扰;
    DoG RNA在病毒感染过程中调控基因组的三维结构。


    DoG RNA形成的嵌合体RNA和环状RNA在癌症和疾病中的作用>>


    DoG RNAm6A修饰、R-loop等表观遗传调控的影响>>

  • 全面涵盖 DoG RNA的潜在下游调控靶点:

     与下游邻近基因正向重叠的lncRNAcircRNA

     嵌合体 RNADoG RNA宿主基因与下游邻近基因的顺式剪接产物);

     rt-circRNADoG RNA宿主基因与下游邻近基因的反式剪接产物);

     与下游邻近基因反向重叠的mRNA lncRNA


    Arraystar对特定剪接位点的特异性探针设计:

     一张芯片可同时检测 DoG RNA 和所有类型的靶 RNATable 1

     保证检测的高度精确性;

     避免测序方法繁琐而分散的计算和分析


    灵敏度高,尤其适用于DoG下游circRNA和嵌合体RNA等低丰度RNA和微量样本。

     

    Table 1. DoG RNA芯片探针设计方法

    RNA类型

    探针设计策略

    (2)

    DoG RNA

    DoG宿主基因3 polyA元件下游3 kb

    DoG宿主基因的pre-mRNA

    外显子-内含子接头处

    DoG RNA

    下游靶标

    mRNAs/LncRNAs

    外显子-外显子接头处

    下游circRNAs

    反向剪接位点附近

    转录通读circRNAs

    (rt-circRNAs)

    反向剪接位点附近

    嵌合体RNAs

    顺式剪接位点附近

     

    1. Arraystar DoG芯片探针设计


    • DoG 区域探针检测位于DoG宿主基因3′末端polyA元件以外3 kb处的 DoG RNA,不与宿主基因重叠。
    • DoG宿主基因探针: 在DoG宿主基因的pre-mRNA在外显子-内含子接头处或内含子内部设计探针,不与其成熟体mRNA重叠。
    DoG RNA下游转录本探针Downstream transcript probe: 对于DoG RNA下游的mRNA/ lncRNA/ circRNA/ 嵌合体RNA/ rt-circRNA,在成熟体mRNA的外显子-外显子接头处设计探针、在circRNA的反向剪接位点处设计探针。

  • Arraystar Human DoG RNA芯片包含超过14,000个探针,可同时检测和量化 DoG RNA及其潜在的调控靶点,包括DoG RNA宿主基因的pre-mRNA 、下游重叠的转录本等,具有高准确性和强特异性。


    Table 2. Arraystar Human Downstream-of-Gene (DoG) RNA芯片

    探针总数

    14,707

    探针结合位点

    DoGs (downstream-of–gene transcripts): DoG宿主基因3末端polyA元件以外3 kb处。

    Pre-mRNAs from the DoG host genes: DoG宿主基因的pre-mRNA外显子-内含子接头处。

    Downstream sense-overlapping LncRNAs of DoGs: lncRNA的外显子-外显子接头处。

    Downstream sense-overlapping CircRNAs of DoGs: circRNA的反向剪接位点处。

    ChimeraRNAs (mature cis-splicing products of read-through transcripts of DoG and downstream read-in chimeric genes): 嵌合体RNA的顺式剪接接头位点。

    rt-circRNAs (circular RNAs produced by back-splicing of read-through transcripts): 转录通读rt-circRNA的反向剪接位点。 

    Downstream anti-sense overlapping lncRNAs or coding RNAs of DoGs: 成熟体RNA的外显子-外显子接头处。

    Drosophila spike-in RNAs:结合果蝇来源control RNA的对照探针。

    探针特异性

    转录本特异性

    DoG RNA数目

    4,460

    DoG宿主基因的

    pre-mRNA数目

    4,460

    DoG RNA下游正向lncRNA数目

    480

    DoG RNA下游circRNA数目

    1,546

    嵌合体RNA数目

    539

    转录通读rt-circRNA数目

    356

    DoG RNA下游反向lncRNA数目

    1,866

    对照探针数目

    1,000

    来源数据库

    DoG RNA: 公开发表的高分文献[1-13]
    DoG宿主基因: GENCODE human V44[15]
    DoG RNA下游mRNAlncRNA: GENCODE human V44[15]
    DoG RNA下游circRNA: circBase[14, 20]

    嵌合体RNA: FusionGDB2[22] , GENCODE human V44[15],公开发表的高分文献[15, 17, 21]

    转录通读rt-circRNA: 公开发表的高分文献[18, 19]

    对照探针: ENSEMBL BDGP6.46[16]

    芯片规格

    8 x 15K


  • 2. Arraystar Downstream-of-Gene (DoG) RNA Microarray Profiling芯片的实验流程. 首先用oligo(dT)T7随机引物对total RNA做逆转录合成cDNA,然后利用T7 RNA聚合酶合成cRNA,同时将Cy3荧光基团加到cRNA3末端,纯化后将cRNAArraystar DoG RNA芯片杂交并进行DoG RNA定量分析。

  • Arraystar DoG RNA芯片是对DoG RNA 检测和分析最灵敏、最有效和最可靠的方法,数据分析结果包括直接可使用的芯片数据、对 DoG RNA 的丰富分析和注释。

     

    Table 3. 差异表达DoG RNA列表,包括DoG来源基因的pre-mRNADoG下游lncRNA等,包含系统详细的RNA注释。

    DoG comparison (Group1 vs. Group2)

     

    Differential Expression

    transcript ID

    transcript_name

    P-value <0.05

    |log2FC|>1

    Regulation

    DoCACNA1C

    DoCACNA1C

    0.0000148

    2.28324637

    up

    DoCACNA1C-pre-mRNA

    CACNA1C-pre-mRNA

    0.0000203

    2.10372869

    up

    DoCACNA1C-sense-LINC02371-202

    LINC02371-202

    0.0000103

    2.52167687

    up

    DoCACNA1C-antisense-ITFG2-AS1-201

    ITFG2-AS1-201

    0.0000671

    -2.0136142

    down

    DoACADM

    DoACADM

    0.0000115

    -2.4050353

    down

    DoACADM-pre-mRNA

    ACADM-pre-mRNA

    0.0000169

    -2.2008475

    down

    DoACADM-sense-hsa_circ_0012969

    hsa_circ_0012969

    0.0000107

    -2.6164853

    down

    DoACADM-rt-circRNA

    rt-circRNA-ACADM-RABGGTB-e7e2

    0.0000059

    -2.814912

    down

    DoABR

    DoABR

    0.000000034

    3.10297237

    up

    DoABR-pre-mRNA

    ABR-pre-mRNA

    1.6E-09

    5.44875714

    up

    DoABR-sense-hsa_circ_0004931

    hsa_circ_0004931

    0.000000334

    2.96418948

    up

    DoABR-ChimeraRNA

    ChimeraRNA-ABR-NXN-e16e2

    4.16E-08

    4.49189189

    up

     

    Annotation

    DoGRegion
    _Locus

    DoGRegion
    _Length

    HostGene

    Sense overlapping
    DownstreamTranscripts

    Anti-Sense overlapping
    DownstreamTranscripts

    chr12:2697950-
    2779950:+

    82000

    CACNA1C
    (ENST00000399655)

    lncRNA ----- LINC02371-202 || LINC02371;
    rt-circleRNA || CACNA1C(ENST00000399655) 45/47 || LINC02371(ENST00000670289) 2/5

    lncRNA ----- ITFG2-AS1-201 || ITFG2-AS1

    chr1:75763720-
    75805086:+

    41366

    ACADM
    (ENST00000370841)

    CircRNA ----- hsa_circ_0012969(NM_004582 2-6/9) ;
    CircRNA ----- hsa_circ_0012970(NM_004582 4-6/9) ;
    CircRNA ----- hsa_circ_0114121(ENST00000319942 2-2/9) ;
    CircRNA ----- hsa_circ_0114123(NM_002440 2-4/20) ;
    Coding ----- MSH4-201 || MSH4 ;
    Coding ----- RABGGTB-201 || RABGGTB ;
    rt-circleRNA || ACADM(ENST00000370841) 7/12 || RABGGTB(ENST00000319942) 2/9

     

    chr17:998017-
    1003518:-

    5501

    ABR
    (ENST00000302538)

    ChimeraRNA || ABR(ENST00000302538) 1/23 || NXN(ENST00000336868) 2/8 ;
    ChimeraRNA || ABR(ENST00000302538) 16/23 || NXN(ENST00000336868) 2/8 ;
    CircRNA ----- hsa_circ_0004931(NM_022463 2-5/8) ;
    CircRNA ----- hsa_circ_0005351(NM_022463 6-7/8) ;
    CircRNA ----- hsa_circ_0041179(NM_022463 3-4/8) ;
    CircRNA ----- hsa_circ_0041180(NM_022463 2-4/8) ;
    Coding ----- NXN-201 || NXN ;
    lncRNA ----- ENST00000574560 || ENSG00000262434

    CircRNA ----- hsa_circ_0001967(NM_013337 2-3/4) ;
    Coding ----- MRM3-201 || MRM3 ;
    Coding ----- TIMM22-201 || TIMM22 ;
    lncRNA ----- ENST00000573877 || ENSG00000262133 ; lncRNA ----- ENST00000576252 || ENSG00000262003 ; lncRNA ----- ENST00000612517 || ENSG00000277491

    Transcript ID: DoG RNAID编号。

    transcript_nameDoG RNA或相关转录本的名称。

    P-value评估两组DoG表达水平的差异是否具有统计学显著性的p值。

    |log2FC|差异倍数作log2转换的绝对值,表示实验组与对照组之间DoG表达水平的变化倍数。

    Regulation两组比较的上调(up)或者下调(down)。

    DoGRegion_LocusDoG RNA所在的基因组位置,以染色体号和起始、终止位置表示。

    DoGRegion_LengthDoG RNA的长度,以碱基数(nt)为单位。

    HostGeneDoG RNA的来源基因名称。

    Sense overlapping DownstreamTranscriptsDoG RNA在同方向上重叠的下游转录本。

    Anti-Sense overlapping DownstreamTranscriptsDoG RNA在反方向上重叠的下游转录本。

  • 3. DoG RNA研究路线

      

    参考文献

    1. Eaton JD et al: Xrn2 accelerates termination by RNA polymerase II, which is underpinned by CPSF73 activity. Genes Dev. 2018 Jan 15;32(2):127-139. PMID: 29432121; PMCID: PMC5830926.

    2. Iwakiri J et al: Remarkable improvement in detection of readthrough downstream-of-gene transcripts by semi-extractable RNA-sequencing. RNA. 2023 Feb;29(2):170-177. PMID: 36384963; PMCID: PMC9891252.

    3. Rutkowski AJ et al: Widespread disruption of host transcription termination in HSV-1 infection. Nat Commun. 2015 May 20;6:7126. PMID: 25989971; PMCID: PMC4441252.

    4. Rosa-Mercado NA et al: Hyperosmotic stress alters the RNA polymerase II interactome and induces readthrough transcription despite widespread transcriptional repression. Mol Cell. 2021 Feb 4;81(3):502-513.e4. PMID: 33400923; PMCID: PMC7867636.

    5. Cugusi S et al: Heat shock induces premature transcript termination and reconfigures the human transcriptome. Mol Cell. 2022 Apr 21;82(8):1573-1588.e10. PMID: 35114099; PMCID: PMC9098121.

    6. Grosso AR et al: Pervasive transcription read-through promotes aberrant expression of oncogenes and RNA chimeras in renal carcinoma. Elife. 2015 Nov 17;4:e09214. PMID: 26575290; PMCID: PMC4744188.

    7. Heinz S et al: Transcription Elongation Can Affect Genome 3D Structure. Cell. 2018 Sep 6;174(6):1522-1536.e22. PMID: 30146161; PMCID: PMC6130916.

    8. Vilborg A et al: Widespread Inducible Transcription Downstream of Human Genes. Mol Cell. 2015 Aug 6;59(3):449-61. PMID: 26190259; PMCID: PMC4530028.

    9. Hennig T et al: HSV-1-induced disruption of transcription termination resembles a cellular stress response but selectively increases chromatin accessibility downstream of genes. PLoS Pathog. 2018 Mar 26;14(3):e1006954. PMID: 29579120; PMCID: PMC5886697.

    10. Dasilva LF et al: Integrator enforces the fidelity of transcriptional termination at protein-coding genes. Sci Adv. 2021 Nov 5;7(45):eabe3393. PMID: 34730992; PMCID: PMC8565846.

    11. Roth SJ et al: ARTDeco: automatic readthrough transcription detection. BMC Bioinformatics. 2020 May 26;21(1):214. PMID: 32456667; PMCID: PMC7249449.

    12. Wiesel Y et al: DoGFinder: a software for the discovery and quantification of readthrough transcripts from RNA-seq. BMC Genomics. 2018 Aug 8;19(1):597. PMID: 30089468; PMCID: PMC6083495.

    13. Shah N et al: Tyrosine-1 of RNA Polymerase II CTD Controls Global Termination of Gene Transcription in Mammals. Mol Cell. 2018 Jan 4;69(1):48-61.e6. PMID: 29304333.

    14. Glažar P et al: circBase: a database for circular RNAs. RNA. 2014 Nov;20(11):1666-70. PMID: 25234927; PMCID: PMC4201819.

    15. Harrow J et al: GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res. 2012 Sep;22(9):1760-74. PMID: 22955987; PMCID: PMC3431492.

    16. Birney E et al: An overview of Ensembl. Genome Res. 2004 May;14(5):925-8. PMID: 15078858; PMCID: PMC479121.

    17.  Grosso AR et al: Pervasive transcription read-through promotes aberrant expression of oncogenes and RNA chimeras in renal carcinoma. Elife. 2015 Nov 17;4:e09214. PMID: 26575290; PMCID: PMC4744188.

    18.  Vo JN et al: The Landscape of Circular RNA in Cancer. Cell. 2019 Feb 7;176(4):869-881.e13. PMID: 30735636; PMCID: PMC6601354.

    19.  Zhang Y et al. The Biogenesis of Nascent Circular RNAs. Cell Rep. 2016 Apr 19;15(3):611-624. PMID: 27068474.

    20.  Liang D et al. The Output of Protein-Coding Genes Shifts to Circular RNAs When the Pre-mRNA Processing Machinery Is Limiting. Mol Cell. 2017 Dec 7;68(5):940-954.e3. PMID: 29174924; PMCID: PMC5728686.

    21.  Varley KE et al. Recurrent read-through fusion transcripts in breast cancer. Breast Cancer Res Treat. 2014 Jul;146(2):287-97. PMID: 24929677; PMCID: PMC4085473.

    22.  Kim P et al. FusionGDB 2.0: fusion gene annotation update aided by deep learning. Nucleic Acids Res. 2021 Nov 10

    23. Morgan M. et al. It's a DoG-eat-DoG world-altered transcriptional mechanisms drive downstream-of-gene (DoG) transcript production. Mol Cell. 2022; 82(11):1981-1991 [PMID:35487209]

    24. Lai F. et al. Directed RNase H Cleavage of Nascent Transcripts Causes Transcription Termination. Mol Cell. 2020; 77(5):1032-1043.e4 [PMID:31924447]

    25. Rodríguez-Molina JB. et al. Knowing when to stop: Transcription termination on protein-coding genes by eukaryotic RNAPII. Mol Cell. 2023; 83(3):404-415 [PMID:36634677]

    26. Hao JD et al: DDX21 mediates co-transcriptional RNA m(6)A modification to promote transcription termination and genome stability. Mol Cell 2024; 84(9):1711-1726 e1711.[PMID: 38569554]